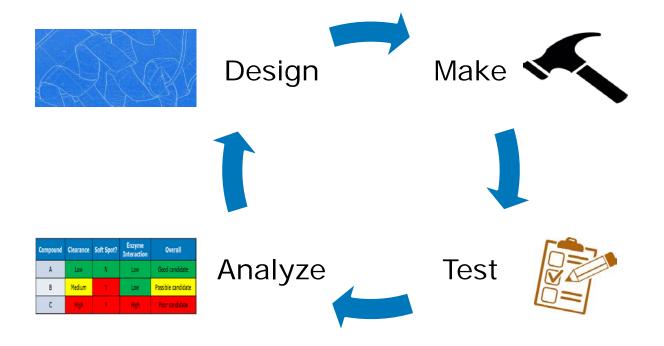


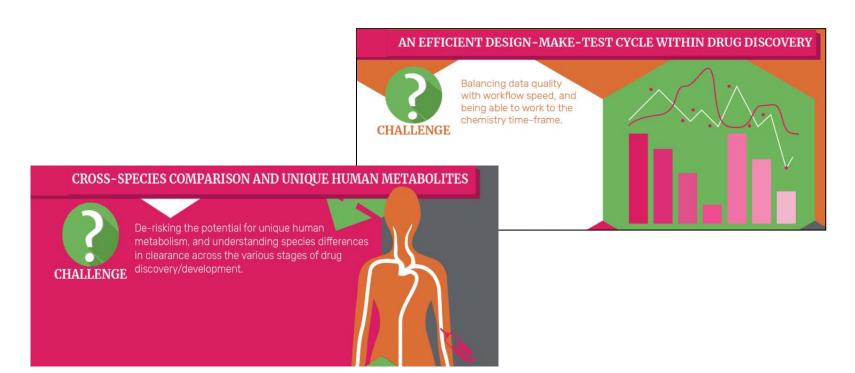
Technological Advancements in Screening Platforms for Metabolite Data Access and Evaluation

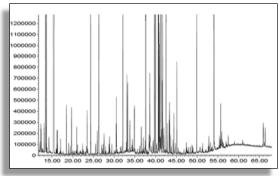
Russell Mortishire-Smith, PhD Waters Corporation

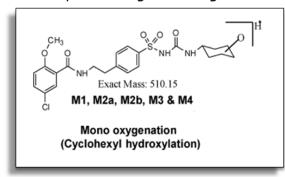
Outline

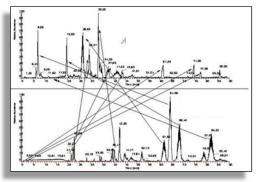
- Introduction
- Metabolite Identification Challenges
- Benefits of Ion Mobility in Metabolite Identification
- Integration of Ion Mobility into DMPK using Software
- Future Opportunities

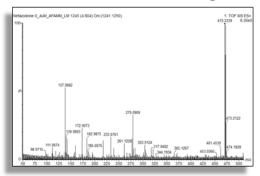




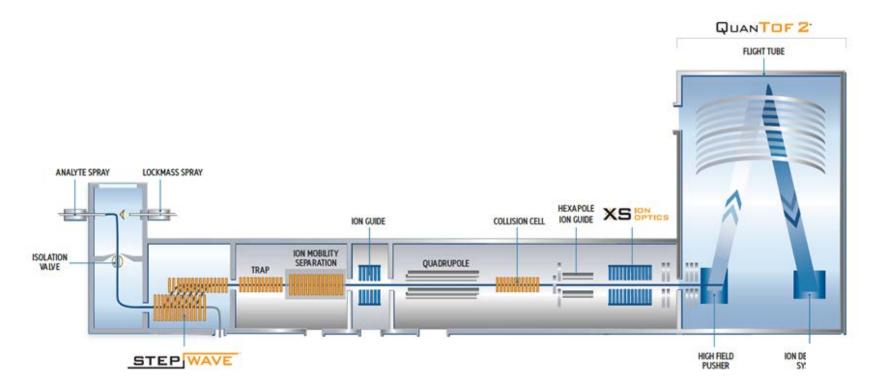


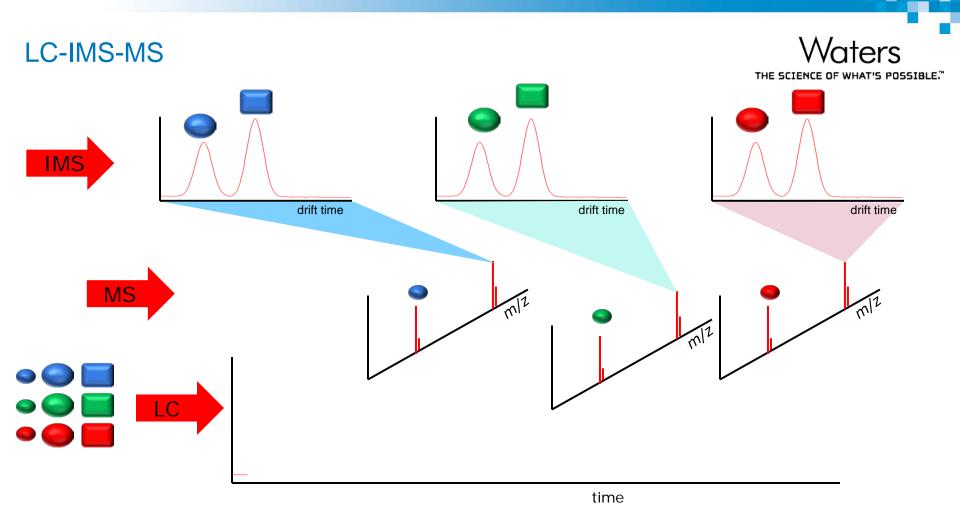

https://www.bioanalysis-zone.com/2018/07/30/in-the-zone-biotransformation_inz_biot_waters/



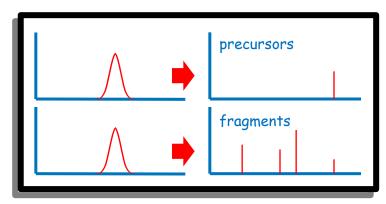

Complex biological backgrounds

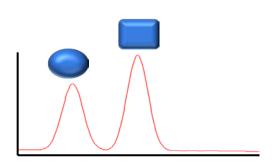
Localization of sites of metabolism


Retention time shifting

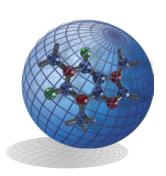


Spectral Clarity



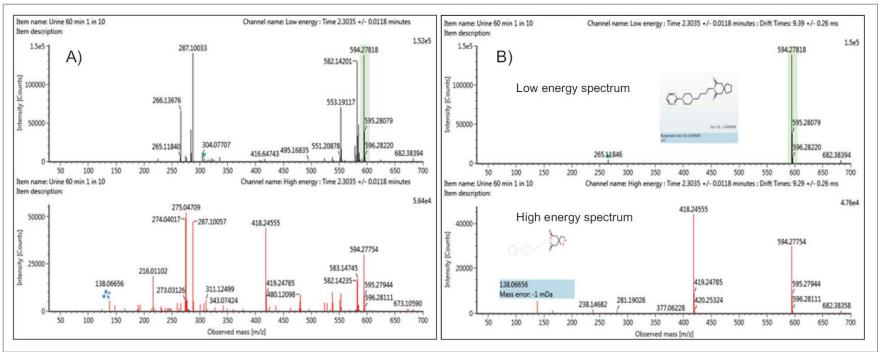


- Single sample injection
- Alternating low and high energy spectra
 - Precursor and fragment ions
 - MW information
 - Structural information
 - Confirmatory ions
- All of the data all of the time
 - No data dependent switching where information can be missed
- ■MS^E



Orthogonal Separation

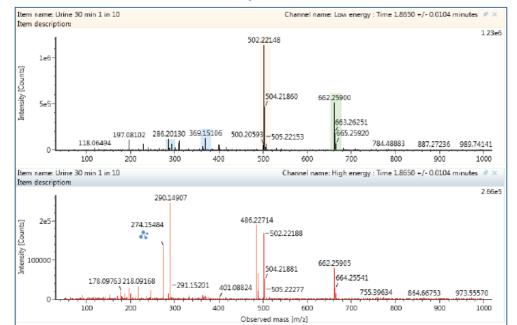
- The ability to see more
- Resolution of isomers
- Cleaner spectra


Collision Cross Section

- IMS drift time ⇒ CCS
- Additional identification point
- Matrix independent
- System independent

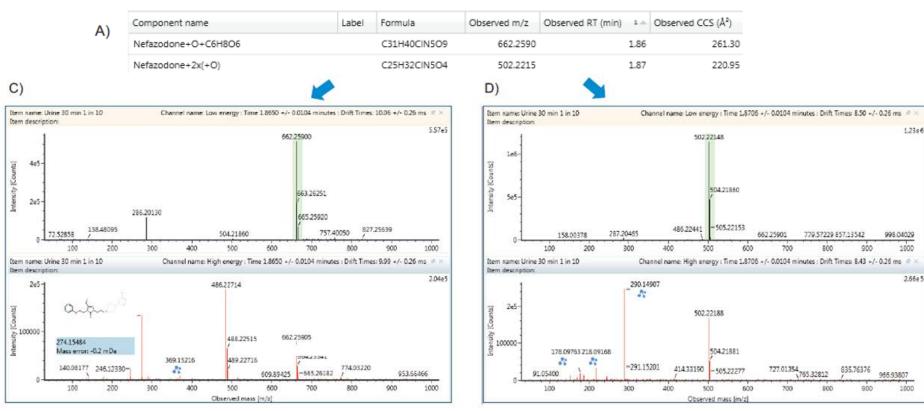
Ion Mobility for Spectral Clarity in Metabolite Identification

Low and high energy (HDMS^E) spectra for the dihydroxylated glucuronide metabolite of buspirone without ion mobility showing many precursors and fragment ions at the same t_{B} (A) and with ion mobility (B).



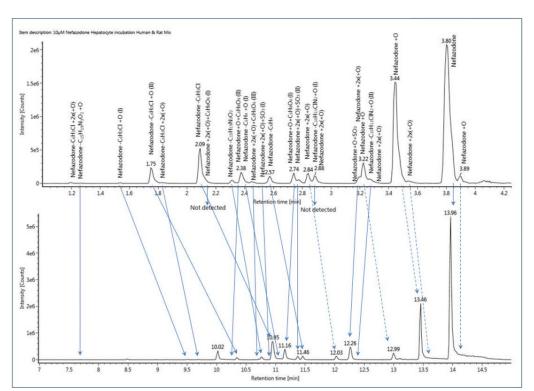
B)

Observed CCS (Å2) Component name Label Formula Observed m/z Observed RT (min) A) Nefazodone+O+C6H8O6 C31H40CIN5O9 662,2590 1.86 261.30 502,2215 1.87 Nefazodone+2x(+O) C25H32CIN5O4 220.95



Kirk, Jayne, Russell Mortishire-Smith and Mark Wrona. Integrating Ion Mobility into Routine Metabolite Identification Studies using the Vion IMS QTof Mass Spectrometer. Waters Application Note 720006121EN. 2017.

CCS Values to Resolve Co-Eluting Metabolites



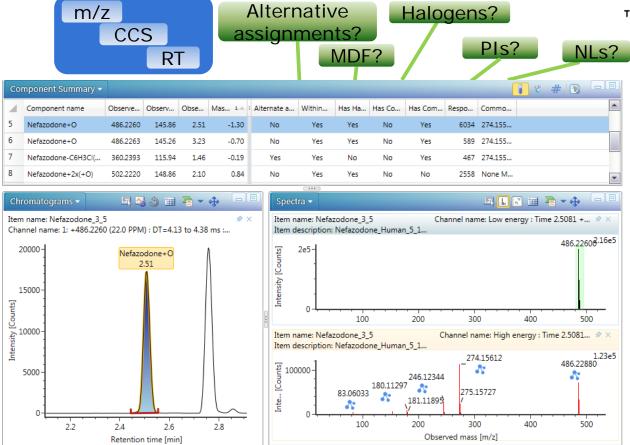
Kirk, Jayne, Russell Mortishire-Smith and Mark Wrona. Integrating Ion Mobility into Routine Metabolite Identification Studies using the Vion IMS QTof Mass Spectrometer. Waters Application Note 720006121EN. 2017.

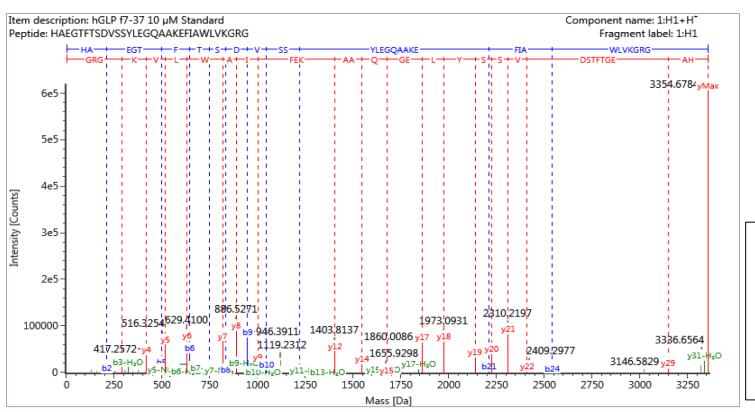
CCS Values for Condition Independent Metabolite Tracking

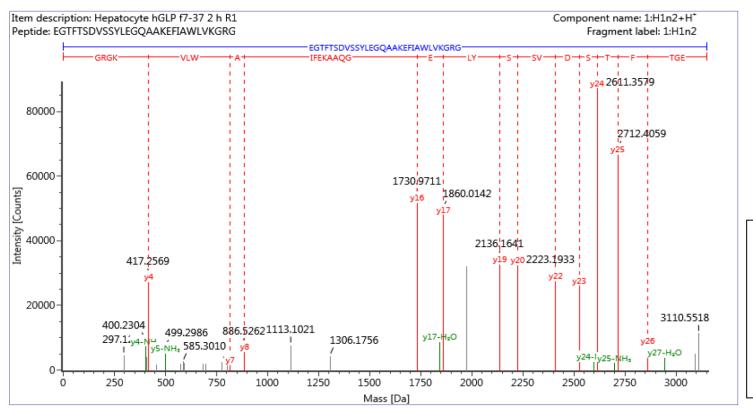
Corresponding Nefazodone Metabolites Matched across Method 1 and Method 2 Samples by Comparison of CCS Measurement Method 1 UPLC Method 2 HPLC Theoretical Mean Mean Mean Mean Mean

		Method	1 UPLC	Method		
Metabolite	Theoretical [M+H]*	Mean RT (min)	Mean CCS (Ų)	Mean RT (min)	Mean CCS (²)	∆% CCS
Nefazodone	470.2317	3.81	210.28	13.97	210.65	0.18
Nefazodone +O+C ₆ H ₈ O ₆ (I)	662.2587	2.75	255.40	11.17	254.88	-0.21
Nefazodone +O+C ₆ H ₈ O ₆ (II)	662.2587	nd	nd	11.39	239.72	-
Nefazodone +2x(+O)+ $C_6H_8O_6$ (I)	678.2536	2.19	252.41	nd	nd	-
Nefazodone +2x(+O)+ $C_6H_8O_6$ (II)	678.2536	2.38	258.59	10.35	257.38	-0.47
Nefazodone +2x(+O)+C ₆ H ₈ O ₆ (III)	678.2536	2.46	242.99	10.76	242.72	-0.11
Nefazodone +O+SO ₃	566.1834	3.19	228.23	12.27	229.04	0.35
Nefazodone +2x(+O)+SO ₃ (I)	582.1783	2.55	224.18	10.94	224.46	0.12
Nefazodone +2x(+O)+SO ₃ (II)	582.1783	2.78	232.68	11.38	233.44	0.33
Nefazodone -C ₆ H ₄	394.2004	2.58	196.10	11.47	196.13	0.02
Nefazodone -C ₆ H ₄ +O (I)	410.1953	2.38	198.24	10.98	198.49	0.13
Nefazodone -C ₆ H ₄ +O (II)	410.1953	nd	nd	11.21	198.77	-
Nefazodone -C ₆ H ₃ Cl	360.2394	2.10	179.46	10.95	179.82	0.20
Nefazodone -C ₆ H ₃ Cl +O (I)	376.2343	1.54	183.86	9.52	183.19	-0.36
Nefazodone -C ₆ H ₃ Cl +O (II)	376.2343	1.76	182.49	10.42	182.53	0.02
Nefazodone -C ₆ H ₃ Cl +2x(+O)	392.2292	1.83	185.12	9.70	185.00	-0.07
Nefazodone -C ₁₀ H ₁₁ CIN ₂ +O (I)	292.1655	2.89	199.40	nd	nd	-
Nefazodone -C ₁₀ H ₁₁ CIN ₂ +O (II)	292.1655	3.28	164.07	12.28	164.09	0.01
Nefazodone - $C_{15}H_{19}N_3O_2$	197.0840	2.32	143.13	10.78	142.62	-0.36
Nefazodone -C ₁₅ H ₁₉ N ₃ O ₂ +O	213.0789	1.27	145.05	7.69	144.58	-0.33

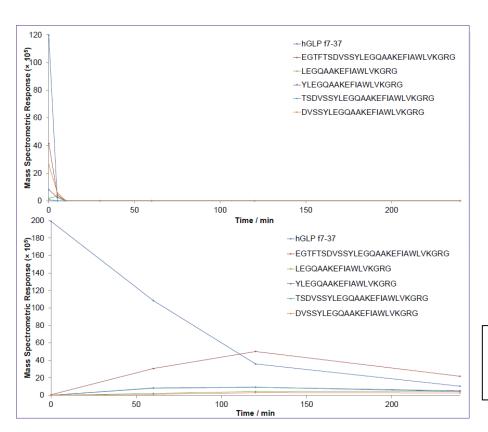
Holdsworth, Catherine, Richard Clayton, Helen Robinson, Callum Lord-Mears and John Kendrick. Utilisation of Ion Mobility Enabled Collisional Cross Section Measurements for the Comparison of Metabolites across Differing Chromatographic Methods. Poster presented at the Joint DMDG/GMP Open Meeting 2016.




UNIFI Met ID Application for Small Molecules



H Robinson, R Clayton, S Johnson, J Kirk, and M Wrona. Evaluation of Intelligent Software Tools for the Metabolite Profiling and Identification of Peptide-Based Large Molecules. Poster presented at ASMS, 2018.



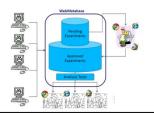
H Robinson, R
Clayton, S
Johnson, J Kirk,
and M Wrona.
Evaluation of
Intelligent Software
Tools for the
Metabolite Profiling
and Identification
of Peptide-Based
Large Molecules.
Poster presented
at ASMS, 2018.

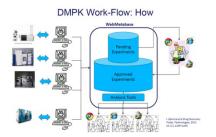
H Robinson, R Clayton, S Johnson, J Kirk, and M Wrona. Evaluation of Intelligent Software Tools for the Metabolite Profiling and Identification of Peptide-Based Large Molecules. Poster presented at ASMS, 2018.

Letter	Н	Α	Ε	G	Т	F	Т	S	D	٧	S	S	Υ	L	Ε	G	Q	Α	Α	K	Ε	F	T	Α	W	L	V	K	G	R	G
Number	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37

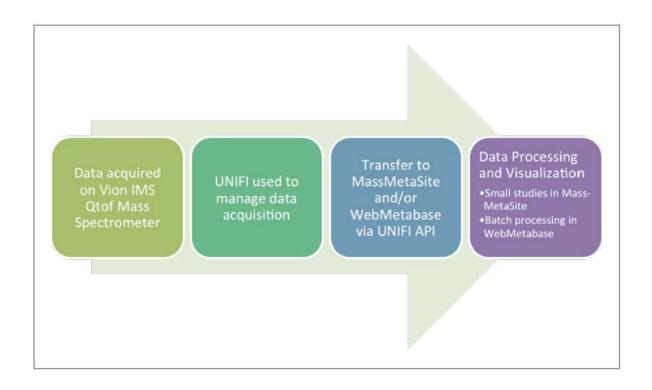
H Robinson, R Clayton, S Johnson, J Kirk, and M Wrona. Evaluation of Intelligent Software Tools for the Metabolite Profiling and Identification of Peptide-Based Large Molecules. Poster presented at ASMS, 2018.

MASSMETASITE WebMetabase


What are Mass-MetaSite and WebMetabase?


- Mass-MetaSite
 - engine that processes LC-MS data to identify drug metabolites in biological samples

- WebMetabase
 - processes MMS data from multiple compounds and conditions for databasing and visualization



 Together, MMS and WMB capture all in vitro and in vivo biotransformations into a database, enabling data sharing, mining and new chemistry design.

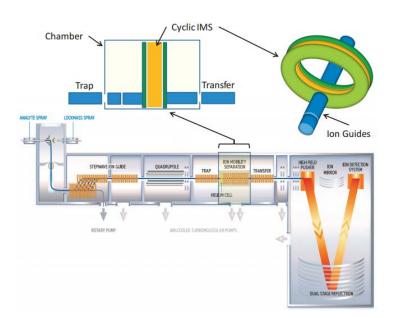
What Does This All Mean for the DMPK Lab?

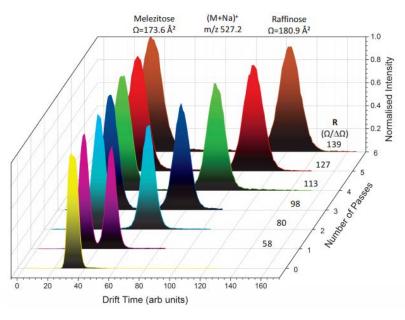
Capacity

Time

Automation

- Better spectral quality by IMS means increased confidence in identification, structural elucidation, distinguishing co-eluting metabolites
- CCS values means another separation dimension acquired at the same time that is matrix, ion concentration and chromataographic condition independent
- Integration of ion mobility data with software means a less manual workflow, allowing scientists to work on value added projects


What are Future Possibilities for IMS and CCS?



- Improvements in IMS resolution will come with time
- Significant opportunity if we can make CCS modelling routine
- CCS libraries will provide fuel for modelling

ISiCLE: A molecular collision cross section calculation pipeline for establishing large in silico reference libraries for compound identification

Sean M. Colby¹, Dennis G. Thomas¹, Jamie R. Nunez¹, Douglas J. Baxter¹, Kurt R. Glaesemann², Joseph M. Brown¹, Meg A Pirrung³, Niranjan Govind¹, Justin G. Teeguarden^{1,4}, Thomas O. Metz^{1,*}, Ryan S. Renslow^{1,*}

KEYWORDS: metabolomics, standards-free, collision cross section, high-performance computing, computational chemistry, density functional theory, molecular dynamics, ion mobility

¹ Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.

² Communications and Information Technology Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.

³ National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.

⁴ Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA

Thank You!

- Covance
 - Richard Clayton
 - Catherine Holdsworth
 - Sarah Johnson
 - John Kendrick
 - Callum Lord-Mears
 - Helen Robinson
- Waters
 - Nathan Anderson
 - Yun Alelyunas
 - Jayne Kirk
 - Mark Wrona

Waters

THE SCIENCE OF WHAT'S POSSIBLE.®